
ASP-II for SWEG Network Communications • III-2.0

Update: 02/17/98 2.16-1 SWEG Version 6.5

2.16 NETWORK COMMUNICATIONS

Network communications provide a commander with the capability to transmit intent and
orders to subordinates, and they enable subordinate units to send requests, own-force status
information, and intelligence data up the various command chain hierarchies. Network
communications also connect peers during mission execution. The communications
network consists of the communications equipment onboard each platform (see
Section 2.7) and each platform’s knowledge about how to communicate with other
platforms. This knowledge consists of the means of communication (satellite uplink,
encrypted teletype, digital data link, two-way landline, or broadcast); the channels,
frequencies or data links to use for the various means; and the message types and formats
(protocols) for each of the different message types.

Most communication in SWEG requires an explicitly defined network; the only exception
is for entities which are modeled as separate components of a single player. These
intraplayer components have implicit instantaneous perfect communications. Explicit
network communications are completely user defined. The creation of communications
networks in SWEG involves three primary steps: network types definition, message
protocol definition, and instantiation of a network.

The user defines the types of communications networks that may be used within the
scenario. The definition of a network type includes the mode (continuous or intermittent),
the time required for all members of the network to change to a new frequency, whether or
not to perform an explicit signal calculation, the message types which the net can handle,
and the transmit time and priority for each message type that will be transmitted on the
network. The typical net types that could be found in a DoD mission-level model might be
landline, broadcast and satellite uplink.

The user defines the protocol for each message type that may be used within the scenario.
The protocols will include the message’s subject, the desired action by the recipient upon
message receipt, and the data that comprises the body of the message. SWEG will use the
message types in order to create an instance of a message at the time of transmission. Some
potential message types include intelligence report, weapons assignment, and cancel
assignment.

The user creates an instance of a network type by assigning a unique network identifier to
the network type and specifying the network’s initial and alternate frequencies. The
instantiation is complete when platforms are assigned to the newly created communications
network. The assignment of the unique identifier permits SWEG to have multiple instances
of the same network type.

Real world entities usually belong to multiple command chain hierarchies, utilize various
means of communications, and are members on multiple communications networks.
SWEG allows the user to place a platform on any number of nets of any user-defined types;
a net can send only one message at a time. Two simultaneous transmissions at the same
frequency on different nets will not interfere with each other. The user defines the
connectivity between platforms by arbitrarily assigning them to nets; thus any two
platforms can communicate. The user also defines tactics and capabilities for the platforms
that specify their procedures for transmitting and noticing messages, and for making

Network Communications • III-2.0 ASP-II for SWEG

SWEG Version 6.5 2.16-2 Update: 02/17/98

decisions about taking any actions as a result of receiving a message. Thinking and
decision-making are described in Sections 2.9 - 2.11.

2.16.1 Functional Element Design Requirements

This section contains the design requirements necessary to implement the simulation of
network communications in SWEG 6.5.

a. SWEG will use networks for communication between players in a scenario and
will provide the user with the capability to define the types of networks which
may be used.

b. For each net type, SWEG will provide the user with the capability to specify
either intermittent or continuous mode for message transmission. Intermittent
mode nets are modeled so that emissions from the transmitters occur only when
an explicitly modeled message is being sent. Transmitters on continuous mode
nets are considered to be continuously transmitting whether or not a specific
message is actually being sent. The transmit mode affects the sensing chances
for the warning receiver sensors.

c. For each net type, SWEG will provide the user with the capability to define the
time delay for changing frequencies; this delay must be greater than or equal to
zero. Should the user specify alternate frequencies for any specific net, SWEG
will use this time delay when changing to the new frequency. If no alternate
frequencies are specified for the net, the time delay is ignored during
processing.

d. For each net type, SWEG will provide the user with the capability to specify
whether or not signal level is to be explicitly calculated for message
transmission. If not, signals will be assumed to be strong enough for all
messages to be received on nets of that type. In particular, the net will not be
disruptable by jamming.

e. SWEG will provide the user with the capability to specify the protocols or
message types that can be transmitted on each type of net. For each protocol, the
user can specify a transmit time and a one-way priority. The transmit time
represents the elapsed time between transmission and receipt of the message.
The priority affects the queuing of messages for the recipient to process (see
Sections 2.9 - 2.11 for a discussion of queuing).

f. Within each message type, SWEG will provide the user with the capability to
specify an action for the recipient. SWEG will not require that the message
recipient act according to the specified action; the response of the recipient will
be determined by its decision-making instructions (described in Sections 2.9-
2.11). Currently, the user can specify three action categories:

• Action - This option informs the recipient that a particular action is
expected upon receipt.

• Cancel - This option informs the recipient that a particular pending action
should be removed from the pending list.

ASP-II for SWEG Network Communications • III-2.0

Update: 02/17/98 2.16-3 SWEG Version 6.5

• Information - This option is used when the purpose of a message is to
convey data.

g. SWEG will provide the user with the capability to specify the subject of the
message type. Currently, SWEG has seven pre-defined subjects:

• potential target perception

• recipient

• all sensor perceptions of the recipient

• sender

• recipient’s subordinates

• recipient’s commanders

• any particular player whose relation to the receiver cannot be adequately
described by the previously listed options.

h. SWEG will provide the user with the capability to precisely define the data
included in a message type. The information included in a message type can be
categorized into three classes, and each message type will contain data items for
only one class. The first class defines data items related to a specific perception,
and any one or more of the following may be included:

• 2D position
• 3D position
• pitch
• attitude
• speed
• local track ID
• global ID
• player type
• platform type
• system status
• communications device frequencies
• sensor frequencies
• sender status
• perceived elements
• perception time
• perception-interaction key
• sender-interaction key

The second class defines the possible modes of control for the recipient to
assume, and any one or more of the following may be included:

• assume control of weapon assignments
• assume control of launching
• assume control of jamming

The third class defines a description of some item to be requested of or through
the recipient, and any one or more of the following items may be requested:

• a resource
• an amount

Network Communications • III-2.0 ASP-II for SWEG

SWEG Version 6.5 2.16-4 Update: 02/17/98

• an action
• a quantity
• a destination

i. SWEG will provide the user with the capability to define specific instances of
nets by specifying an ID number, the net type, and a frequency, and possible
alternate frequencies. Each specific net must have at least one platform assigned
to it.

2.16.2 Functional Element Design Approach

Connectivity between players is implemented in the SDB where the net types are defined,
and specific communications receivers are assigned to an instance of a net type by
specifying an unique net identifier as well as the main and alternate frequencies. Each type
of communications network that might be used in the scenario must have a net type entry.
This entry defines the network’s transmit mode, the time delays in changing frequencies,
the requirement of whether or not to calculate a signal level, the types of messages that can
be transmitted over the net type, and the time delays and priorities associated with each
message type. The message types are defined in the MESSAGE-DEFINITION section of
the TDB.

In order for players to communicate with each other, they must have both a
communications receiver and transmitter; and the receiver and transmitter must be paired
through the linkages data item in the TDB. Even if a player is only going to receive a
message, it must have a paired transmitter. The paired receiver and transmitter must belong
to the same player, however they can be systems on different elements or different
platforms.

Each SDB player assigns communications receivers to a specific net. The communications
transmitters are assigned to the net by default since they are paired to a specific receiver. A
scenario player becomes a member of a net by specifying the net’s identifying number, the
net type and a frequency within the system data entry in the SDB’s player data item.
Alternate frequencies can be defined for a net, and the frequency is changed by implicitly
modeled tactics in the physical transmission event.

2.16.3 Functional Element Software Design

This section contains a table and two software code trees which describe the software
design necessary to implement the requirements and design approach outlined above. The
table lists most of the functions found in the code trees, and a description of each function
is provided. Figure 2.16-1 depicts the path from main to yakker, the top-level C++ function
within the code for communication events. Figure 2.16-2 contains the code tree for yakker
and its subordinate functions.

A function’s subtree is provided within the figure only the first time that the function is
called. Some functions are extensively called throughout SWEG, and the trees for these
functions are in the appendix to this document rather than within each FE description.
Within this FE, the functions in that category are MITRcontrol and all member functions
in the C++ class WhereIsIt.

ASP-II for SWEG Network Communications • III-2.0

Update: 02/17/98 2.16-5 SWEG Version 6.5

Not all functions shown in the figures are included in the table. The omitted entries are
trivial lookup functions (single assignment statements), list-processing or memory
allocation functions, or C++ class functions for construction, etc.

TABLE 2.26-1. Network Communications Functions.

Function Description

antgeom calculates antenna pointing and relative angle data

BaseHost::Run runs all steps

crslwc determines line/circle crossing

crslwl determines line/line crossing

crslwp determines line/plane crossing

ergatn calculates attenuation for energy transmission

ergazel retrieves table entry for gain from azimuth and elevation

erggar calculates gain and range for energy transmission

featlos determines if shapes interfere with line of sight

jamcal calculates jammer interference power at victim receiver

loschk checks line of site between two objects

main controls overall execution

MainInit initiates processing

MainParse controls parsing of user instructions

numerical sorts function for address codes

program controls execution of all steps except bootstrap

redwood adds new entry to or removes top entry from leftist tree

region determines if a point is within a two dimensional region

semant controls semantic processing of instructions

simnxt controls runtime execution

simphy controls processing physical events

simul8 controls semantic processing of runtime instructions

srhpro searches table for an entry containing a specific value

TAddrData::GetJamInteractions checks for jammer interactions with a communications device

TAddrData::GetParentData retrieves the TAddrData object from a parent

TAddrData::GetShapeList finds the shape list at a given address

TAddress::GetAddresses retrieves a sorted collection of addresses between two points

TAddress::InsertVertCodes inserts address codes, including parents, for the given point

TMemory::Allocate allocates permanent storage

TMemory::AllocTemp allocates temporary storage

TMemory::Deallocate deallocates storage

TMemory::DeallocFront deallocates storage

TMemory::LLSTremove removes a node from a linked list

TMemory::LLSTsearch searches a list

TMemory::LLSTsearchhard searches a list using extra parameters

Network Communications • III-2.0 ASP-II for SWEG

SWEG Version 6.5 2.16-6 Update: 02/17/98

main
|-BaseHost::Run

|-MainInit
|-program

|-MainParse
|-semant

|-simul8
|-simnxt

|-simphy
|-yakker

|-yaksig
|-yaknex

FIGURE 2.16-1. Network Communications Top-Level Code Tree.

TTerrain::EdgeMasklos determines the masking of terrain edges

TTerrain::Elevation determines the z-coordinate on a surface given the x and y coordinates

TTerrain::FindTriangle determines the terrain triangle for a point given an x,y coordinate pair

TTerrain::LineOfSight determines if there is a line of sight between two objects

WhereIsIt::CalcPosition determines position for a platform given a time

WhereIsIt::CalcUnitVel determines unit velocity for a platform given a time

WhereIsIt::CalcUpVector determines local up vector given a time

yaeail adds yet another entry to the scenario action item list

yakker controls processing of communications events

yaknex determines next communications event for a given net

yaksig determines signal level at receiver

TABLE 2.26-1. Network Communications Functions. (Contd.)

Function Description

ASP-II for SWEG Network Communications • III-2.0

Update: 02/17/98 2.16-7 SWEG Version 6.5

yakker
|-TMemory::Index2Ptr
|-TTable::SearchIGetDouble
| \-TTable::RequiredInt
| |-TTable::SearchInteger
| | \-TMemory::Ptr2Index
| \-TMessages::WriteMessage
| |-TMessages::GetMsg
| |-TMessages::PrintALine
| | \-TSeqFile::Write
| | \-MFiles::Append
| \-sysdun
| |-TActWindow::GetNext
| |-TActWindow::~TActWindow
| \-ProgramStop::ProgramStop
| \-SwegExcpt::SwegExcpt
| \-StringDup
|-TMaster::GetPlayer
| \-TAccDirect::GetItem
| \-TAccDirect::GetItem
|-TPlayer::IsAlive
|-TMemory::LLSTsearch
| |-TMemory::LLSTsearch
| | \-TMemory::Index2Ptr
| \-TMemory::Index2Ptr
|-TMemory::Ptr2Index
|-yaksig
| |-TMemory::Ptr2Index
| |-TMemory::LLSTsearch
| |-TMemory::LLSTsearchhard
| | |-TMemory::LLSTsearchhard
| | | \-TMemory::Index2Ptr
| | \-TMemory::Index2Ptr
| |-TMemory::Allocate
| | \-TMemory::DoAllocate
| | |-TMemory::GetBlockLength
| | |-CountMemOpns
| | | \-TMaster::DebugOn
| | |-TMemory::Ptr2Index
| | |-ProgramStop::ProgramStop
| | \-TMemory::WriteSummary
| | |-TMemory::WordsUsed
| | |-TMemory::CalcWdsLeft
| | \-CountMemOpns
| |-isZeroEquiv
| |-TMemory::Index2Ptr
| |-WhereIsIt::CalcPosition

FIGURE 2.16-2. Network Communications Code Tree.

Network Communications • III-2.0 ASP-II for SWEG

SWEG Version 6.5 2.16-8 Update: 02/17/98

| |-loschk
| | |-TMaster::GetTerrain
| | |-TMaster::TerrainOn
| | |-DVector::Getz
| | |-dbg_acos
| | | |-MathExcpt::MathExcpt
| | | \-acos_c
| | |-operator-
| | |-DVector::GetHorizLength
| | |-DVector::Getx
| | |-DVector::Gety
| | \-TTerrain::LineOfSight
| | |-DVector::Getz
| | |-DVector::Getx
| | |-DVector::Gety
| | |-dist
| | |-dbg_acos
| | |-VertexIndex::VertexIndex
| | | \-VertexIndex::operator=
| | |-TTerrain::FindTriangle
| | | |-VertexIndex::VertexIndex
| | | |-TAddress::Cartesian2Spherical
| | | | |-dbg_sqrt
| | | | |-dbg_asin
| | | | | |-MathExcpt::MathExcpt
| | | | | \-asin_c
| | | | \-dbg_atan2
| | | | \-MathExcpt::MathExcpt
| | | | \-SwegExcpt::SwegExcpt
| | | |-TMessages::WriteMessage
| | | |-TAddress::Spherical2Cartesian
| | | | \-TMaster::DebugOn
| | | |-VertexIndex::operator=
| | | |-VerticeArray::operator[]
| | | | \-VertexIndex::Value
| | | |-TTerrain::toPtr
| | | | \-SwegExcpt::SwegExcpt
| | | |-operator-
| | | | \-VertexIndex::VertexIndex
| | | |-VertexIndex::operator++
| | | |-dist
| | | |-operator+
| | | | \-VertexIndex::VertexIndex
| | | \-VertexIndex::operator+=
| | | \-operator+
| | \-TTerrain::EdgeMasklos
| | |-dist
| | |-VerticeArray::operator[]

FIGURE 2.16-2. Network Communications Code Tree. (Contd.)

ASP-II for SWEG Network Communications • III-2.0

Update: 02/17/98 2.16-9 SWEG Version 6.5

| | |-operator+
| | |-VertexIndex::operator+=
| | |-isZeroEquiv
| | \-TTerrain::toIndex
| | \-SwegExcpt::SwegExcpt
| |-featlos
| | |-TMaster::GetTerrain
| | |-TMaster::TerrainOn
| | |-DVector::Getx
| | |-DVector::Gety
| | |-DVector::Getz
| | |-TTerrain::Elevation
| | | |-DVector::Getx
| | | |-DVector::Gety
| | | |-VertexIndex::VertexIndex
| | | |-TTerrain::FindTriangle
| | | |-VerticeArray::operator[]
| | | |-operator+
| | | \-isZeroEquiv
| | |-TMemory::Index2Ptr
| | |-TMemory::AllocTemp
| | | \-TMemory::DoAllocate
| | |-sorted_collection::sorted_collection
| | |-TAddress::GetAddresses
| | | |-TAddress::GetCode
| | | | |-DVector::Getx
| | | | |-DVector::Gety
| | | | \-TMessages::WriteMessage
| | | |-TAddress::InsertVertCodes
| | | | |-sorted_collection::insert_nodup
| | | | | |-MTree::insert_nodup
| | | | | | |-MTree::insert_nodup
| | | | | | \-MTree::MTree
| | | | | \-MTree::MTree
| | | | \-numerical
| | | |-operator-
| | | |-operator^
| | | |-TAddress::GetCellRadius
| | | |-dbg_sqrt
| | | |-operator*
| | | |-DVector::operator+=
| | | \-operator+
| | |-sorted_collection::getfirst
| | |-sorted_collection::getnext
| | | \-MTree::getnext
| | |-TAddress::GetShapeList
| | | |-TAddrNode::DataPresent
| | | | \-TAddrNode::GetNode

FIGURE 2.16-2. Network Communications Code Tree. (Contd.)

Network Communications • III-2.0 ASP-II for SWEG

SWEG Version 6.5 2.16-10 Update: 02/17/98

| | | | |-TAddrData::GetCode
| | | | |-TAddrData::TAddrData
| | | | |-TAddrNode::TAddrNode
| | | | | \-MTree::MTree
| | | | \-TAddrData::PutNodePtr
| | | \-TAddrData::GetShapeList
| | | \-TMemory::Index2Ptr
| | |-TMemory::Ptr2Index
| | |-TTable::SearchInt
| | | \-TMemory::Ptr2Index
| | |-region
| | | |-DVector::Getx
| | | |-DVector::Gety
| | | |-dbg_atan2
| | | \-dist
| | |-crslwp
| | | |-DVector::DVector
| | | |-DVector::DVector
| | | |-dbg_sqrt
| | | |-crslwc
| | | | |-operator-
| | | | |-DVector::Putz
| | | | |-operator^
| | | | |-dbg_sqrt
| | | | |-operator+
| | | | \-operator*
| | | |-TMemory::Index2Ptr
| | | |-DVector::operator
| | | |-crslwl
| | | | |-operator-
| | | | |-operator*
| | | | |-DVector::Getz
| | | | |-operator+
| | | | \-operator*
| | | |-TMemory::Allocate
| | | |-DVector::Getx
| | | |-DVector::Gety
| | | \-TMemory::Ptr2Index
| | |-DVector::DVector
| | |-sorted_collection::delete_collection
| | | \-MTree::delete_tree
| | | |-MTree::delete_tree
| | | \-TMemory::Deallocate
| | | |-TMemory::Deallocate
| | | | |-TMemory::DeallocFront
| | | | | \-TMemory::GetBlockLength
| | | | |-TMemory::Index2Ptr
| | | | |-CountMemOpns

FIGURE 2.16-2. Network Communications Code Tree. (Contd.)

ASP-II for SWEG Network Communications • III-2.0

Update: 02/17/98 2.16-11 SWEG Version 6.5

| | | | \-TMemory::RcylBlock
| | | | |-TMemory::Index2Ptr
| | | | \-TMemory::Ptr2Index
| | | \-TMemory::Ptr2Index
| | \-TMemory::Deallocate
| |-erggar
| | |-antgeom
| | | |-DVector::DVector
| | | |-WhereIsIt::CalcPosition
| | | |-DVector::operator=
| | | | |-FloatVector::Getx
| | | | |-FloatVector::Gety
| | | | \-FloatVector::Getz
| | | |-DVector::DVector
| | | | |-FloatVector::Getx
| | | | |-FloatVector::Gety
| | | | \-FloatVector::Getz
| | | |-operator-
| | | |-DVector::Norm
| | | |-DVector::GetHorizLength
| | | |-DVector::operator
| | | |-DVector::Getx
| | | |-DVector::Getz
| | | |-DVector::Gety
| | | |-WhereIsIt::CalcUnitVel
| | | |-WhereIsIt::CalcUpVector
| | | |-operator*
| | | |-operator+
| | | |-operator*
| | | |-FloatVector::Getx
| | | |-FloatVector::Gety
| | | |-FloatVector::Getz
| | | |-DVector::VecAng
| | | | |-operator^
| | | | |-operator*
| | | | |-DVector::DVector
| | | | |-DVector::GetLength
| | | | |-isZeroEquiv
| | | | \-dbg_atan2
| | | \-DVector::GetLength
| | |-TMemory::Index2Ptr
| | |-srhpro
| | |-TMemory::Ptr2Index
| | \-ergazel
| | |-TMemory::Index2Ptr
| | |-srhpro
| | \-TMemory::Ptr2Index
| |-DVector::Getz

FIGURE 2.16-2. Network Communications Code Tree. (Contd.)

Network Communications • III-2.0 ASP-II for SWEG

SWEG Version 6.5 2.16-12 Update: 02/17/98

| |-operator-
| |-DVector::GetHorizLength
| |-ergatn
| | \-srhpro
| \-dbg_pow
| \-MathExcpt::MathExcpt
|-jamcal
| |-TMemory::Index2Ptr
| |-WhereIsIt::CalcPosition
| |-TAddrData::GetParentData
| | \-TAddrNode::GetParentData
| |-TAddrData::GetJamInteractions
| |-TTable::SearchInt
| \-TMemory::Deallocate
|-TMemory::Allocate
|-yaeail
| |-TMemory::Index2Ptr
| |-TMaster::GetGameTime
| |-TMaster::DebugOn
| |-TMessages::WriteMessage
| |-TMemory::Allocate
| |-TMemory::Ptr2Index
| |-TMaster::PutScenrTree
| |-redwood
| | |-TMemory::Index2Ptr
| | \-TMemory::Ptr2Index
| |-TMaster::GetScenrTree
| | \-TMemory::Index2Ptr
| \-TMaster::GetPhase
|-yaknex
| |-yaeail
| |-TMemory::LLSTremove
| | |-TMemory::Index2Ptr
| | |-TMemory::LLSTsearch
| | | \-TMemory::Index2Ptr
| | \-TMemory::Deallocate
| | |-TMemory::Ptr2Index
| | |-TMemory::DeallocFront
| | |-CountMemOpns
| | \-TMemory::RcylBlock
| \-TMemory::Deallocate
\-TMemory::Deallocate

FIGURE 2.16-2. Network Communications Code Tree. (Contd.)

2.16.4 Assumptions and Limitations

• Messages of the same priority are transmitted on a FIFO basis.

• Net transmission capabilities are limited only by the user-defined time delays

ASP-II for SWEG Network Communications • III-2.0

Update: 02/17/98 2.16-13 SWEG Version 6.5

for message types sent over the net and the fact that only one message at a time
is sent.

• Messages are either received in total or not at all.

• Messages are required to include information, not just an action request.

• Intraplayer communications is implicitly modeled and assumed to be
instantaneous and perfect.

2.16.5 Known Problems or Anomalies

None.

Network Communications • III-2.0 ASP-II for SWEG

SWEG Version 6.5 2.16-14 Update: 02/17/98

